Laboratory 2

(Due date: 002: February 8th, 003: February 9th)

OBJECTIVES

- ✓ Use the Concurrent Description and the Structural Description in VHDL.
- ✓ Implement Combinational circuits on an FPGA.

VHDL CODING

✓ Refer to the <u>Tutorial: VHDL for FPGAs</u> for a list of examples.

FIRST ACTIVITY: (100/100)

8-BIT BARREL SHIFTER: This circuit transforms an 8-bit input into an 8-bit output, based on the inputs dist[2..0], dir, and mode, which specify several shifting/rotation options.

Operation:

mode

- ✓ result[7..0]: It is shifted version of the input data[7..0].
- ✓ mode: It controls the operation mode.
 - mode=0 (arithmetic mode): when shifting to the right, sign-extension is used. Shifting to the left inserts 0's.
 - mode=1 (rotation mode): when shifting to the right or left, no bits are lost (they wrap-around).
- ✓ dir: It controls the shifting direction (dir=1: to the right, dir=0: to the left).
- ✓ dist[2..0]: number of bits to shift.
- The circuit consists of four 8-to-1 bus muxes (8 bits) and three 2-to-1 bus muxes (3 bits) that are interconnected together. The inputs to the 8-to-1 bus muxes are rearranged versions of the 8-bit input: abcdefgh.

mode = 0. ARITHMETIC MODE				mode = 1. ROTATION MODE			
dir	dist[20]	data[70]	result[70]	dir	dist[20]	data[70]	result[70]
0	0 0 0	abcdefqh	abcdefqh	0	0 0 0	abcdefqh	abcdefgh
0	001	abcdefqh	bcdefqh0	0	001	abcdefqh	bcdefgha
0	010	abcdefgh	cdefgh00	0	0 1 0	abcdefgh	cdefghab
0	011	abcdefgh	defgh000	0	0 1 1	abcdefgh	defghabc
0	100	abcdefgh	efgh0000	0	100	abcdefgh	efghabcd
0	101	abcdefgh	fgh00000	0	101	abcdefgh	fghabcde
0	1 1 0	abcdefgh	gh000000	0	1 1 0	abcdefgh	ghabcdef
0	1 1 1	abcdefgh	h0000000	0	1 1 1	abcdefgh	habcdefg
1	0 0 0	abcdefgh	abcdefgh	1	0 0 0	abcdefgh	abcdefgh
1	001	abcdefgh	aabcdefg	1	001	abcdefgh	habcdefg
1	010	abcdefgh	aaabcdef	1	0 1 0	abcdefgh	ghabcdef
1	0 1 1	abcdefgh	aaaabcde	1	0 1 1	abcdefgh	fghabcde
1	100	abcdefgh	aaaaabcd	1	1 0 0	abcdefgh	efghabcd
1	101	abcdefgh	aaaaabc	1	1 0 1	abcdefgh	defghabc
1	1 1 0	abcdefgh	aaaaaab	1	1 1 0	abcdefgh	cdefghab
1	1 1 1	abcdefgh	aaaaaaaa	1	1 1 1	abcdefgh	bcdefgha
data	8,						
			l	r	I		
	left-shift		right-shift		left-rotat	e r:	ight-rotate
	dir=0,mode=0		dir=1,mode=0		dir=0,mode=	=1 d:	ir=1,mode=1
dist 🗦				_/			
dir		0	1		$\overline{}$		1
Gii							/
						1	

⁸ Vresult

1

• The following figure specifies the exact inputs to each 8-to-1 bus mux:

VIVADO DESIGN FLOW FOR FPGAS:

- ✓ Create a new Vivado Project. Select the XC7A100T-1CSG324 Artix-7 FPGA device.
- \checkmark Write the VHDL code for the barrel shifter.
 - To implement the 2-to-1 bus mux and the four 8-to-1 bus muxes (each with different inputs), it is strongly advised that you use the VHDL concurrent statements.
 - To implement the top file, use the Structural Description: Create a separate file for the 2-to-1 bus mux, for each 8-to-1 bus mux, and the top file (where you will interconnect all the components).
- ✓ Write the VHDL testbench to test the circuit for all possible variations of dist, dir, and mode. For data use: 10101101 and 01110011. In total, you should text 64 cases.
- ✓ Perform <u>Functional Simulation</u>. **Demonstrate this to your TA**.
- ✓ I/O Assignment: Create the XDC file. Nexys-4 DDR Board: Use SW7-SW0 for data[7..0], SW10-SW8 for dist[2..0], SW11 for dir, and SW12 for mode. Use LED7-LED0 for result[7..0].
- ✓ Perform <u>Timing Simulation</u>. **Demonstrate this to your TA**.
- ✓ Generate and download the bitstream on the FPGA and test. Demonstrate this to your TA.
- Submit (as a .zip file) all the generated files: VHDL code files, VHDL testbench, and XDC file to Moodle (an assignment will be created). DO NOT submit the whole Vivado Project.

TA signature: _____

Date: _____